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ABSTRACT

When working to balance newly manufactured rotoustent methods generally work
well. New rotors are generally concentric and withdistortions, and standard
rotordynamics theories describe their behavior wielbwever, in the service industry,
most rotors arrive with bows or deformations frorany years of operation. When
dealing with flexible rotors with significant masscentricities or bows (in excess of the
“controlled initial unbalance” limits allowed by €61940), current theories don't fully
address or explain their dynamic behavior. Furtwge, standard balancing methods
often require excessive runs and encounter ditfeesiin meeting contracted balancing
criteria.

A new balancing procedure has been developed velfiicivs successful multi-plane
balancing (using 2N+1 balancing planes) of rigidiexible rotors found to be outside
ISO 1940 standards. The procedure utilizes medsureut eccentricities and FE-
modeled rotor mode shapes for the selection ohloalg planes. The majority of
balancing is done on any common, high-speed badgmoachine at not higher than 50%
above the first system resonance. The key is agpgrrigid mode” effects from
resonant effects, and balancing each separatéig.rigid modes are balanced using
axially distributed weights, while the resonant meare balanced only with modal
weights in a zero-sum force and moment configunatidhe end result is a “dynamically
straight” rotor that remains balanced and has stodion or bending at any speed. This
method requires fewer runs, saving time and moaweg,the rotor is guaranteed not to
need field balancing upon properly aligned instaita
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INTRODUCTION:

Balancing technology is still relatively new. Tiyior forty years ago it was primarily

still part of the skilled trade and was often olvedu In more recent years, balancing
literature has proliferated, and numerous writinggyeneral balancing and the balancing
of flexible rotors can be found. The majority @pers and references are centered
around the derivation of equations of motion based Jeffcott rotor model. These
balancing concepts, developed as a result of thieakgvork, have been able to satisfy
most rotors’ balancing requirements, particuladiyriewly manufactured rotors. The
original practical balancing guidelines and craenere established by OEMs to deal
with new rotors, and these OEM practices were syumsgly transferred to industry. In
practice, however, especially in the service ingushany rotors tend to be “difficult” to
balance. New rotors generally don’'t have the mwisl that service rotors encounter, and
the OEMs’ standards and practices don’t translai tev rotors that have mass
eccentricities in the form of bows, deformationgamning errors or other issues.

The ever growing need in power generation to predawer increasing megawatts has led
to increasingly slender and flexible rotor designttirbines and generators. This
increased flexibility can lead to difficulties imlancing, and especially when the rotors
have been deformed outside their design toleranths.manufacturing standards that
have been created to classify and to deal withethesl all rotors have been based on the
machining accuracy, condition and dynamic behawiarewly manufactured rotors.
Though not an exact application of Pareto’s 80(#6, ithe ratio seems to hold that at
least 80% of newly manufactured rotors are in ttpgeeted condition (that is, their
distributed mass eccentricity falls within the limmdesignated by ISO 1940 standards),
and standard methods of balancing apply. The @0%r or so are considered from a
standards point of view to be “exceptions” andsarggested to be dealt with on a case by
case basis. However, when it comes to the seevicgonment, all the rotors
encountered have been running for some periodrd,tand through various operational
issues or repairs, may have developed defectsasibbws, bent couplings or other
problems. Among these operational rotors handiexivice repair facilities, the above
ratio is reversed, and around 80% of these rotersatside the manufacturing limits
prescribed in ISO 1940, and behave as exceptidasuch, the standard balancing
methods do not apply, or at the very least terehtmunter significant difficulties.

When standard balancing methods are used (sutie &&tethod or N+2 method), even
any rotor with mass eccentricity can eventuallyesgygo be balanced perfectly well in a
balancing facility, since it is operating in an oopled condition. However, when the
balanced eccentric rotor is reinstalled in thedfighd coupled to other rotors, it very often
has excessive vibration and doesn’t run as expecedntless times, an argument
develops where the service shop says, “It was bathperfectly well over here, it must
be your installation error,” while the plant regli€We installed it correctly, so it must be
your error in balancing.” In reality, both sidemndoe telling the truth, and the apparent
error arises instead from a misunderstanding @fdyhamics behavior.



The goal of this paper is to qualitatively expléie rotordynamic behavior of flexible
rotors with significant distributed mass eccentyithat can lead to the rotor’s inability to
run when installed in the field, and to demonsteateew balancing method that
successfully balances any eccentric or bowed ratditionally guaranteeing that it will
run smoothly when installed in the field.

The Problem of Assumptions:

All rotors used as tools for transmitting power aeated in textbooks as simple beams,
or as massless shafts with attached point-ma$gasy beam theories were developed in
the past ((Timoshenko, Euler-Bernoulli), along witlethods to calculate a rotor’s critical
speeds and to predict its rotordynamic behaviasi{PMyklestad, Stodola-Vianello,
Rayleigh, Ritz and FEA based). These theoriesosimers are all founded on the
assumption that a rotor acts at all times as a gpnieg-and-mass system, and that its
behavior is linear through its entire operatingegspeange. These theories also assume
that the rotor mass is absolutely concentric. €hlssumptions are valid in practice for
concentric rotors with negligible mass eccentesitwithin the limits of ISO 1940, and
are perfectly valid in a wide range of cases.

However, in the unique cases where a rotor hasldistd mass eccentricity outside the
limits of ISO 1940, these theories don’t fully exipl the rotor’'s behavior. When a
rotor’'s mass eccentricity exceeds the point whieeediynamic contribution from that
eccentricity is negligible, the rotor no longer bebs as a linear system. Additionally, at
a speed above the rotor’s first system resonaecgiéncy, it no longer behaves as a pure
spring-mass system, but rather as a body goveméetehial forces. It is in this mode of
behavior that balancing eccentric rotors becomiéiswali. Balancing method
descriptions almost always include the statemesisiming that the rigid rotor
unbalances have been solved.” However, it is @id rotor unbalances that in an
eccentric rotor create the difficulties to beginhyiand their full effect with regard to
eccentric rotors is neglected in theories of rbgnavior and balancing.

In the equation of motion of a spring-mass systa@ass eccentricities are assumed to
have the same effect as unbalance forces. Howewvex significantly eccentric rotor,

this is trueonly up to the rotor system’s first critical speed, isutot true at higher

speeds. Above the first critical speed, the iaasfithe eccentric mass becomes dominant
over the spring force of the rotor system.

Another incorrect assumption is that an eccentiorrwill spin about purely a single axis
at all speeds. In practice, a rotor with distrdzlimass eccentricity naturally changes its
axis of rotation (or precession) from its shaftsafthat is, the line connecting the two
journal centers) to its central principal mass gthat is, the line passing through the
mean center of mass from all radial planes) aasses through its first system critical



speed, and later at higher resonant frequencidewir speeds, the mass axis will

technically be in precession around the shaft ak@jgh the rotation and precession will
be synchronous and identical, and there reallpigue separate precession. At higher

speeds (above the first system resonance), thigorognd precession are still

synchronous, but separate. The spinning of the baidy remains around the shaft axis
at all speeds, since the input torque always dstahis axis, while this shaft axis also
at the same time precesses around the mass aximth cases, low, before thd dystem

resonance, and high, above1f' system resonance speed, the minimum amplitude
measured is equal to the eccentricity excludingratgr’s bending.

Bowed Eccentric Rotor: Shaft Axis and Mass Axis are not Coincidental
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Figure 1: Sketch of the change in axis precession of a bowed rotor at the first critical speed, with

the center shifting from the shaft axis to the mass axis.



The cause of this axis change is based within siggnenetric inertial forces generated
from the mass eccentricity, due to the rotor teogeri self balancing above the first
system critical. This will be explained in detailthe next section of the paper. A simple
sketch showing the general idea of this changeisia seen in Figure 1. (The way the
figure is shown here is only applicable if spinningcoupled in free-free mode; if
coupled, other bending will likely occur).

This change in axis is most readily visible whawtar is spinning in a balancing bunker,
and can be observed in the measured position afhiaie centerline. In a balancing
facility, if an eccentric rotor is brought up toega while uncoupled (free-free mode), its
rotation will switch at the first critical speedfn being centered at the shaft axis, to a
precession of the shaft axis around the now-cetht@igss axis (or, will switch to the
maximum extent allowed by the bearing clearancesase the eccentricity distribution is
particularly skewed or large). Any balancing wegjtinat are subsequently placed based
on readings above the first critical will inadverty balance the rotor around its mass
axis, since the mass axis will have become theecerhfprecession of the shaft axis. Any
measured responses of displacements or bearingsfaritl likewise be based on the
rotor’s rotation about its mass axis. These resgsican appear to be within tolerance
criteria in the bunker, making the rotor appedséonell balanced, but the rotor will

likely not run well when installed in the field asgin constrained around a “forced” axis.

After being balanced around its mass axis, if terris reinstalled in the field and
coupled to other rotors, its rotation (and any pss@n) will be constrained to its shaft
axis at all speeds. In this situation, the massrtticity itself along with the installed
balance weights will now all act as unbalance ferme the rotor, since the rotor has not
been balanced around its shaft axis. This wilht@every high vibrations in the rotor
train.

The solution is to first balance a rotor with edceity in a way that balance weights are
distributed to counteract unbalance forces fromdis&ibuted mass eccentricity, such
that the overall central principal mass axis istetlito be fully coincidental to the shaft
axis, while also not causing any new rotor bendimganing that no unresolved moments
were left on rotor). This will prevent the changeotational axis from occurring (since
now there is effectively only one axis to deal Witfrhis will also solve the “rigid mode”
forces (this will be described in more detail |lateAny remaining unbalance effects at
higher speeds can be balanced if needed usingypucalal weights (so that no new
moments are created from modal bending). Whealledtin the field, the rotor will
naturally spin around its shaft axis at any spaed,provided it is installed with correct
alignment, the rotor is guaranteed to run smodthihe field.

To get the proper balancing weight distributioneaoentric rotor must be balanced in a
minimum of 2N+1 balancing planes (where N is thghkst mode the rotor reaches at



operating speed). It is well known that any fullyid rotor can be balanced in any two
planes. Any flexible rotor can be divided into gko sections or “modal elements” such
that each element acts as a rigid body at frequehity’ critical speed. By balancing the
mass eccentricity and unbalance of each rigid aiémewo planes (each non-open-end
plane of the rotor is shared by two elements, siheelements are adjacent), and by
proper axial distribution of the weights, placeglanes selected based on rotor’s highest
mode, within its’ operating range the unbalanceaffrom the mass eccentricity (that is,
the “rigid mode” responses) can be compensatedrfdrfully eliminated for all speeds.
Before moving on, it should be remembered thag#reeral definition of a balanced

rotor is that the rotor produces zero dynamic fematthe bearings, and not necessarily
zero displacement. Also, an ideally balanced dcicemotor, for which the axial
distribution of unbalance is known, would be bakhn an infinite number of balancing
planes (Federn). Only then would the rotor’s nags be brought exactly coincidental

to the rotor’s shaft axis. This would mean thatAlnbalances are compensated for with
forces from balancing weights, such that none woel@xcited at the respective resonant
speeds, and that there would be no unresolvechalteroments left on the rotor.

The author has developed a balancing procedurdotghe balancing planes and ensure
proper weight distribution to remove the effectany rotor body eccentricity (referring

to the rotor mass between the bearings), and brusffect of inertial forces at higher
speeds. The full balancing procedure can be coetpktless than 50% above the first
system critical speed. Thus, it is given the nagwesi-High Speed Balancing Method
(QHSBM). A detailed explanation of this new baliagcmethod in high speed balancing
facility for large turbine generator rotors is déised in the second half of this paper.

ROTORDYNAMIC BEHAVIOR OF ECCENTRIC ROTORS:
Before delving into the explanations, some ternagglshould be clarified first:

As mentioned earlier, the rotor’s shaft axis (t@@uxis, or shaft centerline, or geometric
axis, or design axis) is the line connecting th&eeof the journals, and is the axis the
rotor is intended by design to spin around. Theri® mass axis (or principal mass axis)
is meant as the mean straight line passing thrtuglenter of the mass of each radial
plane of the rotor. The rotor’s torque axis is ¢keater of where the input torque is
applied (via a coupling), and it is the torque akat truly defines a rotor’s rotational
axis. In this paper, the torque axis is assumedways be the shaft axis, although errors
in machining or couplings or alignment can causetthnot always be the case in real
life. Any rotor always spins at all times and sggearound its torque axis. However, this
torque axis itself can be in synchronous precesaionnd the mass axis at higher
rotational speeds.

The “rigid modes” of the rotor refer to the motiohthe rotor as a fully rigid beam
without any bending. There are two rigid modetgerk and rocking. The lateral rigid



mode is vibration displacement of the rotor onlygtial to the shaft axis. The rocking
rigid mode is as it sounds — a tilting vibratiosglacement of the rotor around its center
of gravity.

These two rigid modes should not be confused viigtfirst and second critical speed
rotor responses that have similar motions but naesome additional rotor’s elastic
bending. The lateral and rocking rigid modes afiem the centrifugal force from a
rotor’s eccentricity, and can be present at alitrohal speeds of an eccentric rotor.
These rigid modes are not present on a non-ecceatdr. The rigid mode responses
steadily increase with increasing rotor speed (tteeybe seen as a constant up-sloping
amplitude line on a Bode plot, starting from veswlspeed). In contrast, the first and
second critical speed modes are only defined aneesce and are independent of any
additional forcing function besides the originabatance.

A static unbalance is one that causes the masscazesdisplaced only parallel to the
shaft axis (for example, this could be an ecceiyrdistributed equally along the full
length of the rotor). This causes the laterabrigiode, which can also be called the
“static response” usually at very low speeds buswfficiently soft bearings. A couple
unbalance is one that causes the mass axis tidabvthile still intersecting the shaft

axis at the axial center of gravity of the rotdrigtexact situation is almost never seen on
real rotors). A quasi-static unbalance is one thakes the mass axis to be both laterally
displaced and tilted with regard to the shaft axish that the mass axis intersects the
shaft axis at some point other than the rotor'slaggometric center. This is the most
common real situation, and is the case dealt withis paper.

The phrase “bending modes” is used here to refanyoshaft-bending component of the
first and second critical speed resonance respdtismsgh these are not true bending
modes, as the bending depends on the bearingestifnor to the third critical speed
response (which is the first true bending modénefrbtor, being intrinsic to the
geometry of the rotor shaft alone, and not depenalethe bearings). The purpose is
that to understand the behavior of an eccentrar rd to balance it properly, the purely
rigid body effects must be dealt with first, idgdililly separately from any bending
effects from the rotor’s flexibility. In real pracal life, as in the case in a balancing
bunker, some flexing is allowed ,as it will be séater.

Natural Behavior of an Eccentric Rotor:

Ideally, if unconstrained, any rotor will want tatarally spin about its mass axis. In a
perfectly concentric rotor, this mass axis woulthcmle with the shaft axis, and the rotor
would naturally spin around the shaft axis at pdeds, as it was designed to. Traditional
rotor balancing theory would apply in this case.



Where things get interesting is when looking aeacentric rotor with quasi-static
distributed unbalance (typically a shaft bow or hmaed eccentricity), where the rotor is
constrained to spin about its shaft axis (in notroéaal rotation). In this state, there are
numerous aspects of the rotor’'s behavior that hebée separated and dealt with
individually for the purposes of balancing. Ineutentric rotor, the natural tendency
would be to rotate about the mass axis, which waoldcoincide with the shaft axis. If it
spun freely this way, the rotor would be absoluteblf-balanced”, without transmitting
any forces (with measured displacement equal tonthasured rigid mode eccentricities).
However, this tendency is constrained at lowertimtaspeeds (below the first critical
speed) by gravity holding it in the bearings, bg #pring forces within the bearings and
the rotor body itself, and by the applied torqungcalong its shaft centerline. This is the
region where the spring-mass system governs toe lbethavior, and in which the system
acts linearly.

Ultimately, an eccentric rotor’s behavior is depamdon many variables, such as the
level of shaft flexibility, the stiffness of the &@ngs, the bearing clearances, the
distribution of the eccentricity, and whether itmupled to another mass (rotor). These
variables can dictate how the rigid mode respongiébe manifested in the rotor. The
forces causing the rigid mode responses will begneregardless. If the rotor is
relatively free to move, the forces will be seemigsl mode displacements. If the rotor
is constrained by the bearings, the displacemdhbeiow, and the forces will be seen
as high stress in the bearings. In either sitnatize tendency remains for the rotor to
switch its rotational axis as it reaches the firgical speed. During this flip in axis, the
position of the rotor in space changes, and depgnali the bearing constraints, the rotor
displacement may be instead converted into andagbearing forces. The total energy
to be dissipated in the system remains constantewher.

The Two Axes:

Here is a more detailed, qualitative look at thargje in rotational axis described earlier.
In general, a rotor with significant mass ecceitfrican be thought to rotate around two
different axes within the operating range, with &xés depending on rotational speed. Or
more accurately stated, (at any one time) theaa iaxis of rotation and a synchronous
axis of precession. When driven up in speed, dba first starts spinning around its
shaft axis. The mass axis is essentially precgssiound the shaft axis, as the
eccentricity (or “high point” spins around with th&tor body. Then as it passes through
the first critical speed, the rotation “flips” tbe mass axis. Here, the shaft axis
(essentially the whole rotor body) is synchronoyskcessing around the mass axis,
while rotation is still continuing about the shatiis (or axis of torque). When the rotor
decelerates or freewheels down, the rotor folldvessame pattern, flipping from its mass
axis back to its shaft axis, although since themow an absence of torque, the rotor’'s
shaft centerline position in space (relative to@H&journal reference point) may be



different (as hysteresis) when this flip in axikgs place on coastdown. The input torque
itself can act as a constraint to the positiorhefrbtational axis.

A drawing of a shaft-centerline plot can be seeRigure 2. This sketch shows a generic
shaft centerline plot representing the shaft cénegs)’ position with increasing speed.
At the different speeds, a representation of tiierkne’s orbit is shown. There are
actually two different centerlines being followdatdugh the speed range. At lower
speeds, the centerline of the orbit shown is thagahshaft axis. At higher speeds (above
the first system resonance), the centerline obthé shown is actually the mass axis.
The smaller orbits above the first critical repradée effect of the “self-balancing
mode,” where the rotor response lags the outwagfisom the inertia of the

eccentricity by 180 degrees, offsetting its effe&hy subsequent phase shift of rotor
passing through higher modes is done about the'sotass axis. With every phase shift,
mass centerline may assume a different place @nee€e to the original coordinate axis.

Path of Shaft Centerline(s) with Superimposed Orbits Showing Precession
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Figure 2: Sketch showing a generic shaft centerline plot, following the shaft centerline(s)’ static
position as it changes with speed. At low speed, the centerline is truly the shaft axis, while at
high speed the centerline is really the mass axis.

In both cases, the orbits shown represent whatoMoelmeasured by shaft displacement
probes. Of course, the probes and software catistiiguish between an orbit generated
by precession of the mass axis or precession a¢ftthft axis, and in both cases, the orbit
dimension would be a sum of both the deflectiomfrmnbalance response and the size of
the mass eccentricity. Note that the slight chadrgen here in the direction of the shaft
centerline path at the critical speed represertdlittping of the axes and the associated
change in position of the centerlines; this pathnge can in reality go in any direction on
a real rotor, and is not predictable.

Both the motion of the shaft axis and the motiothef mass axis are occurring
synchronously at the same time. For the sakesohple visualization only, this
precession relationship is not unlike the motiothef earth, moon and sun (the
mechanics are wholly different, of course). Theom spinning synchronously with
regard to the earth while orbiting (precessinguarbthe earth, while the earth is also
orbiting around the sun. Visualizing the low speetr situation, the moon is like the
mass axis precession, the earth is like the skadt awhich has its own orbit around the
sun and is also spinning (albeit not synchronowsly regard its orbit around the sun),
and the sun would be like the coordinate centén@khaft axis orbit.

(It should be noted: For each orbit showing mass grecession, there is truly also an
orbit of the shaft centerline (shaft axis) as veit that isn’t drawn; it would be drawn
within the mass axis orbit and be of the same shaijple elliptical radii equal to the mass
axis orbit, less the peak distance measure ofdbengricity. The same thing applies to
the shaft axis precession orbit; there could bevdridne smaller mass axis orbit within it.
For the sake of a less messy drawing, these atatieft off.)

To further clarify, the starting axis (shaft axisYhe initial center of rotation that the
torque is (assumed in this case to be) appliedittr @ 0-O coordinate reference being at
the center of the journals), and the rotor’'s motiothis rotational axis is dominated by
spring and mass forces. This means that the sotootion is in the same direction as the
unbalance force (from the eccentricity), or that thtor’'s motion is in phase with the
force applied. When in its shaft axis, the ecaemyr(“high point” of the surface) will
spin around with the rotor and will always be thenge distance away from the center of
rotation (which is the shaft axis), assuming thengo any additional rotor elastic
bending. Or in other words, the mass axis is [m®0g about the shaft axis. The force
arising from the inertia of the mass eccentricitlf ereate lateral rigid mode vibration,
which acts to pull the rotor outward as it spimsthie direction of the eccentricity (or
mass axis).
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The second axis around which the rotor’s rotatmnrgther, precession) is centered
above the first system resonance (critical) speeldeé mean line through the center of
mass. In this axis, the direction of the rotor’stimo is lagging (theoretically) 180
degrees behind the direction of the unbalance fivore the eccentricity. This in effect
self-balances the lateral rigid mode of the rotouad the mass axis (the rocking rigid
mode, if present, would remain, and be observéugaer speed). Also, in reality, this
“flip” angle need not be exactly 180 degrees, laut ¢ary somewhat depending on the
ratio of the unbalance caused by eccentricity aecamount and direction of other
unbalances on a rotor.

While the shaft axis is precessing about the mziss the rest of the rotor body now
essentially acts as the “high point” and spins adoilnis new mass-center of rotation as
referenced from the initial coordinate axis (théeswaxis from here on becomes the new
reference for the center of rotation). For a ref@nning in free-free mode this change is
easy to visualize. But when the same rotor is spmim a constrained state coupled
within a multi-rotor train, its operating defleati@hape can be difficult to visualize. Itis
necessary to keep in mind the overall level ofditgior flexibility of the rotor in

guestion, or the amount of flexing of any particidactions of the rotor between the
bearings.

The change in axis occurs, as mentioned, througlfirt critical speed. However, the
change itself actually occurs a little before dittke after the actual critical speed,
depending on the distribution of the eccentricitgd @ damping of the system. In the case
of a bend or a bow, where the eccentricity is high¢he center and drops to nearly zero
at the rotor ends, the flip in axis occurs after finst critical speed, and in this case, any
residual displacement residual amplitude is agtualior eccentricity! In the case of a
distributed mass eccentricity along the lengthefrotor, the flip in axis occurs before
the first critical speed and any residual displaeenamplitude is actually a residual
unbalance.

Furthermore, after the flipping of the axes at abthe first critical speed, it is also
important to note that the position of the mass dwies not necessarily then stay in its
new place through the rest of the speed rangkiglfer critical speed responses or
residual rigid mode effects induce bending in tter, this bending will act to again shift
the mass centerline. The shaft axis will still thome its precession around the mass axis,
but the overall position of the rotor (and the magte of the transmitted forces) relative
to the bearings may continue to change as the patsses through higher speeds.

This can all be seen in a Bode plot. The flipxisas seen as a drop in rotor vibration
amplitude, accompanied by a phase shift, as teealaigid mode is momentarily self-
balanced just before or after the first criticalaeance response appears. (A side note:
the first critical resonance response is actualtyted by the lateral rigid mode
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unbalance; if the lateral rigid mode is fully batad and compensated for, the first
critical resonance response will not appear).

If there are no other unresolved unbalances omatenoments, then the amplitude will
remain constant at the level of the eccentricitydibhigher speeds. This demonstrates
that the vibration amplitude of a perfectly balashegcentric rotor can not be reduced any
lower than the value of the rotor’'s eccentricifiyhe vibration amplitude readings can
actually be reduced, but only in a false manneinbgntionally unbalancing the rotor,
such that the shaft displacements at the beariegsomverted instead into new forces
pounding the bearings. Obviously, this is not sirgel solution to reduce vibration
amplitudes. The measured vibration amplitudesatsm appear to be smaller than the
true level of eccentricity because of the choicenefisuring location, especially if the
location is far away from the axial center of gtawf a rotor that is elastically sagging
due to gravity.

It should also be noted that an eccentric rotouireg constant additional torque to
maintain constant-speed rotation, as comparedtmeentric rotor. The constant force
resulting from momentum acting outward on the ettc@mass of the rotor causes either
extra flexing of the rotor (more so for flexibletoes), or causes a continuous extra, cyclic
“push” into the bearings (more so for rigid rotord)his cyclic bearing stress or rotor
flexing must originate from the original input eggrof the rotor. As this force is
dissipated into the bearing, additional energyhaform of extra torque is needed to
maintain the rotor’s speed, beyond the amountrmoju® needed to overcome standard
friction and windage losses.

Another Visualization:

To better understand the dynamics occurring irldateral rigid mode of an eccentric
rotor, it may be helpful to visualize the rotatibages and the centrifugal force effects in
a simpler picture. In the case of a (rigid modaedr rotating freely unconstrained, it
might be easier to first imagine a spinning, twaea propeller with one blade
significantly heavier than the other (say, with eva@oden blade and one steel blade, and
in the absence of gravity). Imagine the propeadleotation is frictionless, and is initially
about its geometric center (its mounting pointy #mat its mount is held in a fixed,
stationary position, allowing no vibration. Assjtins, the unequal momentum of the
propeller blades will exert forces on its mountthie net direction of the steel blade (in
response to the centripetal force exerted by themt)o This is a result of the blades’
constituent particles’ inertia, wanting to moveaistraight line in space, but being
constantly accelerated radially inward throughebeentric mass toward the center of
rotation, by centripetal force (that is, the angfl@ll particles’ velocity vectors is being
continually turned to follow the circular path obtion).
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Because the inertia of the two blades is differérgre will be a constant force exerted on
the propeller's mount. If this is a fully closegstem, then all the energy is conserved.
Both force (internal stress on the mount) and matator motion), originate from the

same original sum total of energy within the systelny subsequent change in
rotational velocity requires an equivalent chang#rces within the system (a
conversion between kinetic and potential energy).

If the net centrifugal force is continuously exdrtes a stress force on the mount (that is,
the propeller isn’t balanced in its rotation), #reergy utilized in producing this force on
the mount is equivalently reduced in the energyl (ance, rotating speed) of the blades’
motion. The blades would slow down steadily owaet This effect is solely because of
the unbalanced rotation about a forced geometig; ag opposed to an axis located at
the propeller’'s center of mass.

Now, let us imagine that the propeller's mountuddenly removed, and the propeller is
left to spin freely unconstrained (still ignoringagity). The net inertia of the blade
wouldn’t change (nor momentum, which is conservedgn though the rotational motion
would instantly change. Given the difference irsges of the blades, the inertia of the
particles in the steel blade would be much grehtan the inertia of the wooden blade.

The blade’s rotation will flip to a rotational axssich that the inertia of each particle of
the blade will be balanced by the net inertia afthar particle (or particles) of the blade
on the opposite side of the new rotational axis.p@ another way, at the moment of
release, the point of the overall center of masgtife propeller’s rotational plane) would
stay stationary in space, and would instantly (@amping considered) become the
propeller's new axis of rotation. Or, it could@lse said that the propeller’s original axis
of rotation is now precessing around the centenads. (However, unlike an eccentric
rotor, there is no rotation still occurring arouhe original rotation point, since there is
no torque applied there.)

The net rotational velocity about its axis wouldheen constant as well. Since
momentum is conserved, the difference in inertitheftwo blades would be converted
into a difference in velocity between the bladgsyintue of the wooden blade now being
farther from the new axis of rotation than the kskd&de, while maintaining circular
motion.

Now, let us imagine this above scenario taking@haithin each radial plane of a
cylindrical, rigid rotor, rotating at a relativelgw speed (well below the first critical
speed). First, let us imagine a rotor that isguly concentric and rotating about its own
shaft axis, and that the rotor is fully constraimathin two bearings.
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It would rotate smoothly, and if the bearings wiesgantly removed, the rotation of the
rotor would remain unchanged. This scenario alsuahstrates that there would have
been no forces exerted on the bearings. By defimithe rotor is perfectly balanced.

Now let us imagine this rigid rotor as having aemy distributed body mass eccentricity
(as a static unbalance), and imagine again thatatating fully constrained within two
fully rigid, stationary bearings (assuming straigbhcentric journals, such that the forced
rotation of the rotor is about its shaft axis).alsimilar manner as in the propeller
example, the rigid rotor would exert a force agaihe bearings, with the net direction of
the force being identical to the direction of tlhiensof all vectors drawn from the shaft
centerline to the rotor’'s center of mass in evadial plane. Even if there is no motion at
the bearings, the tendency of the inertia of theeetric portion of the rotor to
asymmetrically “pull” the rotor radially outward wtal create a continuous synchronous
dynamic force on the bearings. The rotor in tlaisecis clearly not balanced.

Since the rotor is fully constrained by its beasinipe “vibration” of the rotor if

measured at the journals would appear to be Zdrased on displacement measurements
alone. It might wrongly appear to be perfectlydmaled. Meanwhile, force
measurements at the bearings would show very bigle fievels.

If these bearings were instantly removed (imagh&grotor in space), the rotor would
instantly shift its rotational axis to the mearagght line of the center of mass of each
radial plane of the rotor. The journal centers ldawo longer be in the axis of rotation,
and an otherwise stationary probe placed at the@siwould measure “vibration.”
However, the rotor would not be experiencing trimation at this point, and would
actually be perfectly balanced as it would be sipigfreely about its mass axis. The
rotor wouldn’t bend or change shape in any way,wodld be in a state of “dynamic
equilibrium.” If the journals were straighteneddaheir centers repositioned to line up
with this mass axis line, and these journals wegeeraplaced within bearings, the
bearings would once again experience no forces.

BALANCING CONSIDERATIONS FOR ECCENTRIC ROTORS:

The conclusion from the situations described sasfétnat a rotor will naturally want to
spin around its center-of-mass axis in free spaacd that any rotor spinning in that axis
will be naturally balanced and will not transmitdes to its bearings. A goal of
balancing any eccentric rotor, therefore, shoultbbgse balance weights to bring the
rotor’'s mass axis into alignment with the rotofsft axis. However, it is imperative that
the correct axial distribution of balancing weiglgsitilized to accomplish this.
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Of course, when approaching an eccentric rotoetbdlanced, the true shape of the
eccentricity is unknown. Taking detailed runowtdimgs in practice is a crucial first clue
to the weight distribution that might be needed| smrecognize the smallest vibration
amplitudes obtainable given the eccentricity. Wliltempting to “mirror” the
distribution of the mass eccentricity by placinddo@e weights, the distribution of the
eccentricity can only be inferred by the rotor’sasered behavior.

This brings up another important concept. The pseppf compensating for the
eccentricity in multiple balancing planes is toesgglly create a “mirror image” of sorts
of the mass eccentricity. See the image belowhefshape and amount of the
eccentricity is mirrored by the balancing weighi&n the rotor will be “dynamically
straight” in operation at any speed. This meaasttie rotor will not change shape or
bend, regardless of speed (excluding any otherranthbalance).This is the most
critical requirement to successfully balance areatrec rotor.

Rotor with body eccentricity

Figure 3: Distribution of balancing weights mirror the shape of the eccentricity

Shifting the center of mass of the rotor into thafsaxis is not sufficient on its own
without proper axial weight distribution. A condeated weight at one or two planes
could shift the mass axis toward the shaft axiwgs However, a concentrated weight
would create bending at higher speeds due to ngeathigh localized centrifugal force.
Furthermore, a concentrated weight or two wouldiiably introduce internal moments
into the rotor. While concentrated weights coubdgbly reduce the rigid lateral mode
and the flip in axis, the rigid rocking mode wolnle worsened. Therefore, it could be
more accurately considered that the mass axisastuially being moved or shifted to the
shaft axis. Rather, the properly axially distréditveights are creating a compliment to
the mass eccentricity, utilizing balancing weighitts certain distance to create a certain
force to be opposite and equivalent to the forceated by the mass eccentricity. Only
by this method can a rotor that is dynamicallyigtrebe achieved.

Rigid Modes ver sus Resonant M odes, Revisited:
Rigid rotor modes are often negligible on concemniotors, but have a large effect in
balancing eccentric rotors. Recall that that tlaestwo purely rigid modes of a rotor: a

lateral (translational) mode and a rocking (pivgtinode). Within the operating speed
range of power generation rotors, there are alsically up to three resonant mode
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responses that occur at their respective critipaéds. The first two resonant responses
(the so-called first and second mode responsesoargected to the presence of the two
rigid modes, but when dealing with eccentric rottinese must be viewed separately.
The third mode resonant response is the firstiiaraling mode, where two nodal points
will always occur between the bearings, and whaeadtor shaft intrinsically bends
independent of bearing stiffness.

Rigid Modes:

It is possible to have first and second (and thindpe resonant responses without having
purely rigid mode responses present. Howeves,nbt possible to have only the rigid
mode response without also exciting resonant mesigonses at their respective critical
speeds. However, by properly balancing the rigmlenresponse, the first and second
mode resonant responses can often be eliminated aame time.

Eccentric rotors demonstrate both rigid mode beajraamd resonant mode behavior. The
rigid rotor modes are based and originate entinéllgin the shaft. The rigid mode
behavior is typically the best observed at low sige@/here the rotor behaves as a purely
rigid, unbending beam. That is not to say thatrtter in this state won't ever exhibit
some flexing as well, particularly if it is coupléal other rotors, although the source of
the motion would still be from rigid mode behavior.

The rigid modes of an eccentric rotor can be segardless of speed, as their source is
from centrifugal force from unbalance, and not framesonance excitation. However, to
be seen, the unbalance must be a distributed emgniiike a bowed shaft), to produce
a large enough centrifugal force. A simple poirissiunbalance will not induce rigid
mode behavior, as the resultant centrifugal fogesgerally do not get large enough. The
asymmetric momentum from sufficiently large masseetricity will result in increasing
force with the square of rotational speed. Thisdowill then be apparent as either
steadily increasing vibration amplitude, from aesgpef zero on up, or as steadily
increasing bearing forces. A typical Bode plotwimg this can be seen in Figure 4.
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Bode Plot of Typical Amplitude Slope from Rigid Mode Response
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Figure 4: Bode plot showing steady up-sloping amplitude from rigid mode, with first and second
critical speed responses added on top at the respective critical speeds.

Which type or response is seen depends on theraomsif the bearings and the
distribution of the eccentricity. If the mass agparticularly skewed, the rotor will
want to operate in that skewed line, but will [iké&hd the bearing constraining its
motion. In this case, the force will find its aetths potential energy via a pounding or
pushing force in the bearings. If the mass aximase parallel to the shaft, then the
bearing clearances will allow the force to findatglet as kinetic energy via increased
shaft amplitude with speed. Additionally, the sjleed visibility of these lateral or
rocking modes within an eccentric rotor is dependerthe overall system damping. If
the bearings are particularly stiff and have ongrgmal damping, then the response of
these modes can be quite high. If the bearingsdtevith a lot of damping, then these
modes may not be seen at all.

Due to the variability in the type of observed grese of the rigid modes, it is important
for balancing purposes to measure both shaft amdglst and bearing forces. Focusing

only on one or the other can create misinformategarding the state of balance of the
rotor.

Ultimately, the rigid modes unbalance can be solv&@dg the principles of statics,
viewing the rotor as a simple beam under distridbdbeces. Balancing weights need
only be applied and distributed on the side ofrtiter opposite the net eccentricity, such
that the centrifugal force of the weights will egtiee centrifugal force from the
eccentricity. In balancing an eccentric rotorststiatic solution MUST be completed first
before dealing with any other resonant responsespaust compensate for both
unbalance forceand moments. This ensures that the rotor becomeswigally straight
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at all speeds (does not bend). Very often, then@storesponses will end up being solved
as well, or at least greatly reduced with the ajapion of the correct static solution.

A rigid rotor (or a rigid section, or “modal elenténf an otherwise flexible rotor),
regardless of speed, can be balanced in 2 pladese the rotor (or each of its elements)
is properly balanced in 2 planes, the rotor canatuany speed and remain balanced. A
rigid rotor (or a rigid element of a flexible rojatays rigid and balanced regardless of
speed. This is the key principle utilized in thea®i-High Speed Balancing Method
described later.

Resonant M odes:

In contrast to the rigid modes, the resonant respomodes are seenly at their

respective critical speeds, and are based on theased response due to amplification
from an excitation force (such as unbalance) atghv&n speed. However, as mentioned
earlier, unbalance from eccentricity that causesitfid mode responses walso act to
excite the first or second mode resonant respomdash will then act as an

amplification of the same rotor motion caused lgy/rilgid modes. A quasi-static
eccentricity will excite both first and second neant modes. At the second critical
speed, the eccentricity that causes the rockind ngpde will excite the S-mode shape
response. A purely static eccentricity will exaitay the first resonant mode, but not the
second resonant mode (since the unbalance wilmengtric about that mode’s nodal
point; there will also be no rigid rocking mode).

Whether these resonant modes’ excitation respapgesar more as rigid-like translation,
or rocking, or as bending in the familiar first asetond mode shapes, depends on the
level of damping and the ratio of stiffness betwtdenbearings and the shaft. Higher
bearing stiffness will result in more of a bendnegponse, while higher shaft stiffness
will produce more of a rigid-beam type of response.

If the rotor is fully concentric, there will likellge no noticeable rigid mode behavior
(lateral or rocking). In a concentric rotor, thestf appreciable vibration will then not
occur until the first critical speed, when whatexesidual unbalance exists on the rotor
(not a bow or eccentricity) excites the first mati@pe. After passing through the first
critical speed, the concentric rotor’s vibratiotures to zero until reaching the second
critical speed. If there is no unbalance on a eatre rotor, then both the first and
second critical speeds can pass by without resaaitiation. The only way to see their
existence would be by observing the phase shifts.

Above these first two resonant modes, on eithecaentric or concentric rotor, there is
the first flexural mode or first bending critical§o often called the third critical). This
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third critical is the first mode at which the shiself is actually inherently bending
internally, with nodal points between the bearingbe frequency or eigenvalues (rotor
speed) at which the third critical occurs is cortgdieindependent of the bearing
supports. This is in contrast to the first twdicél speed resonant responses, where the
speed at which they occur and their responsesanebearing (support) stiffness
dependent.

Although the third critical inherently bends theag the specific shape (eigenvector) of
the bending still depends on the bearing stiffnéssoft bearings, the resultant shape
has only a single bend in the center. In rigidffdtearings, the shape will include some
bending at the ends of the rotor as well, sinceetids are constrained in the bearings.

After completely balancing the rigid modes, it @rgetimes seen that there are still
resonant responses at the second and third cspesds. These responses can possibly
come from other residual point-mass unbalancesmioug typically are caused by long
overhangs outside the bearings that have somdlkelzending behavior of their own. If
the long overhangs cause a resonant excitatidmea$écond mode, the vibration at the
ends of the rotors will be seen to be 180 degraesfgphase with each other. If the
overhangs excite the third mode, the vibration @esps at the rotor ends will be in phase
with each other.

If the rigid modes are not completely balancednttie overall motion of the rotor will

be a combination of the resonant speed responistee (eritical speeds) and the rigid
mode responses (present through all speeds). Athans most readily recognized by
looking at the amplitude response on a Bode andiNyglots. The rigid mode
component of the rotor’'s motion will be seen asipssloping line through the entire
speed range, while the resonant mode responseSenskten as spikes in amplitude on
top of this line, at the critical speeds.

The Overall Balancing Concept for Eccentric Rotors:

It is essential that the rigid modes must be balanced and resolved first, before dealing
with the bending modes. This assures that the shaft axis and mass ag@nte
coincidental, and prevents all of the effects frihv@ rotor’'s change in rotation axis at the
first system critical speed. More accurately révyents any visible change in axis from
occurring. This prevents the mass eccentricitynfinducing any additional bending in
the rotor from its centrifugal force at higher speéassuming the shaft has some
flexibility), and the rotor will behave like a cosmmtric static beam. Or stated another
way, it assures that the rotor will operate dynaathycstraight through the entire
operating speed range. It can be assured thagidenodes are balanced when the
bearing forces are zero (or minimized to practedilies) at all speeds, other than
possibly at the rotor’s critical speeds. The rotdl behave as a linear system, and
standard balancing procedures would now apply fil@mpoint forward.
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After the rigid mode is resolved, any additionalaeance responsasist be balanced
usingonly purely modal weights. This generally takes thenfof an S-shot for a second
mode or out-of-phase response, or a V-shot foird thode or in-phase response).
These modal shots are defined as weight distribstsuch that the sum of all forces and
moments produced by the weights equals ZeFo< 0 and

¥M = 0). This is essential so as not to disruptrigel mode balance solution by adding
new forces or moments that would act to re-shétrtiass axis away from the shaft axis.
In the placement of the modal weights in theseibigions, the “acting” nominal
weights should be at the point(s) of maximum rol@fitection(s) of the particular mode
being balanced and compensating weights must loegkt the nodal points of the
mode, so as not to disturb the rigid mode solutibhe resolution of the remaining
resonance responses should be relatively strargrafd, after the effects of the rigid
mode behavior have been removed.

A Comparison of Balancing Methods:

There are today, in principle, only two balancingthods generally used for balancing
flexible rotors (in free-free mode) in a high spé&adbncing facility or balancing bunker.
An example of the typicdlighly-eccentric rotor balancing results of these methods, and
the new 2N+1 method (or QHSBM), is shown next. Tdiewing images are for the
simulated balancing of an 800MW, 165,000 pound generotor (with a length of 515
inches and bearing span of 337 inches) that palssmsgyh three critical speeds up to
3600rpm. For the purpose of this comparison ohiwds, the rotor model was given a
tapered, distributed mass eccentricity from zerfivio mils (the model of the rotor can be
seen earlier in Figure 3). The actual balancirngess and results for the real rotor is
presented in the final section of the paper.

N-Method:

The first is the so-called N-method, advocated sh8p and Caldwell (developed in the
USA), where N indicates the number of balancingn@$a which corresponds to the
highest critical speed reached in the rotor’'s ajpeyespeed range. For example, a rotor
passing through three critical speeds requires thmge balancing planes. This method
does not consider any rigid mode unbalances. Fheethod is based around the needs
of an OEM manufacturing environment, where qualawptrol assures that the new
machined rotors have no eccentricity or are withatolerances of ISO 1940. However,
balancing becomes a frustrating activity when theéthod is applied to balancing
rotors with bows or other eccentricities outside piescribed tolerances. This was
recognized even by Bishop. While defending thetjosthat only one plane per rotor
mode is sufficient to balance any flexible rotce,did not skip mentioning that rotors
which exhibit difficulties during balancing are &ted on a case by case basis. The end
result of balancing very flexible, significantlyamtric rotors by the N-method is that the
rotor operates in a contorted shape and produpgsrlforces on the bearings. The single
concentrated weight used at the midplane to baldrecérst mode response will end up
bending the rotor at higher speeds. An exampthisfcontorted shape can be seen in
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Figure 5. For balancing rotors with significanteuwtricity, the N-method is always a
compromise at best.

N-Method: Final Balanced Rotor Shape
800MW 165,000lb Generator Rotor, Tapered Eccentricity

Midplane alone used to balance first critical
Couple used to balance second critical

The N-method balances the eccentric rotor in a distorted
shape (and will produce very large forces in the bearings)

Figure 5: Resulting contorted shape of a significantly eccentric rotor when using the N-method
N+2 Method:

The second method was developed in Europe by afa@ocer of balancing machines
(Schenk A.G.), and is known as the N+2 method #dvocated by Kellenberger and
Federn (Switzerland and Germany), and is supeasititg N-method when dealing with
rotors with some mass eccentricity. Here too, thésnumber of critical speeds passed
by the rotor up to its operating speed. The edtaplanes come from the recognition of
the need to resolve forces from a rotor’s rigid madbalances, which in this method are
balanced first at low speed. Thereafter, the N€2had uses distributed modal weights
in such a way that the sum of the weights’ foraed moments equals zero, thereby
correcting for modal elastic deflections at highpeeds while not disrupting the rigid
mode solution.

The use of the extra 2 (typically outboard) plaimethe N+2 method is based on the rule
from statics that forces acting on any rigid beam be resolved in any two randomly
selected planes. However, this carries the assomibtat the rotor behaves linearly like
a beam at all speeds. If the rotor is concerttris,can be true. If the rotor is bowed or
highly eccentric, then this assumption no longgrliap. The effect of inertial forces
acting on the distributed mass eccentricity ofgédror constrained rotor differs from the
inertial forces acting on eccentricities createdmantarily by modal flexural deflection
at critical speeds. In a significantly eccentaotor, the rigid modes cannot be properly
solved (that is, the mass axis cannot be shiftedtive shaft axis) using only two planes
without also creating new internal moments or ¢éngatew bending in the rotor. The
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rotor body will end up being distorted to be bakhc This causes the rigid mode
responses (from mass eccentricity) to remain régssd However, the rotor will
nonetheless retain its overall shape better cordpgarthe N-method.

There are a couple other practical disadvantaggetdl+2 method. One is that the
method requires a special balancing machine tolefabancing at low speed. Another
is that the only measurement looked at is the ford¢ke bearings, while shaft deflection
is ignored. If dealing with an eccentric rotonistban give an incomplete picture of the
total behavior of the rotor and of the effectshaff thass eccentricity. A third
disadvantage is that after being balanced in “mgatle”, the rotor must be spun through
each subsequent mode speed all the way to opesgteeyl to be balanced for high speed
operation (as in the N-method as well). Overhk, success of this method is directly
proportional to the quality of rotor machining atheé amount or type of distribution of
mass eccentricities. For rotors with high levdlsacentricity, the N+2 method results
are similar to those of the N-method. For rotoithwower levels of eccentricity, the
N+2 method results are closer to the 2N+1 methbdwga next).

N+2 Method: Final Balanced Rotor Shape
800MW 165,000Ib GGenerator Rotor, Tapered Eccentricity

MN+2 method resolves rigid mode forces at low speed,
but does not resolve all the internal moments on rotors
with significant eccentricity.

With higher eccentricity, the rotor still
must be distorted to be balanced

Figure 6: N+2 method results, showing a better maintained rotor shape, but still with rotor
distortion and bending. Bearing forces will still be high.

Quasi-High Speed Balancing Method (2N+1 Method):
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The author has studied in depth the well known Eape theoretical balancing of

flexible rotors, primarily those from two authoBishop and Kellenberger, as well as
many books on balancing high speed rotors. Oatlpbnly Kellenberger describes the
need to first resolve a rotor’s rigid mode unbatmat low speeds before proceeding with
high speed balancing. However, even Kellenberges ot acknowledge the
assumptions he uses for doing so. He mathematathonstrates the principles of
removing bearing forces and a rotor’s elastic dispinent amplitudes, but under the
assumption that the rotor behaves linearly at gegd, ignoring the existence of inertial
forces on eccentric or bowed rotors at higher speed

After balancing nearly a thousand large rotors Imigln speed balancing facility, it
became clear to the author that the N+2 methoduainicing pioneered by Kellenberger
produces superior results when balancing very tjiglowed or eccentric rotors. The N-
method pioneered by Bishop is also an absolutelg@eble method of balancing rotors
provided that there are minimal eccentricitiesutjioit does not provide good results of
rotor in operation, when balancing bowed or ecéenttors. The rotor must already
have minimized “controlled initial unbalances” thie method to produce good results

2N+1 Method (QHSBM): Final Balanced Rotor Shape
800MW 165,000lb Generator Rotor, Tapered Eccentricity

¥ The 2N+1 method resolves all forces AND
moments, regardless of the level of eccentricity
of the rotor

Bearing forces are
reduced to nearly zero

The rotor retains its original shape, and runs
"dynamically straight", without bending

Figure 7: A "dynamically straight" rotor when using 2N+1 balancing planes for, solving the rigid
modes first.

The Quasi-High Speed Balancing Method (QHSBM) esdlfrom experience gained
through many years of balancing in a service smwr@nment, handling a variety of
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generator and turbine rotors of all makes and sigddSBM could be thought of as an
advanced version of the N+2 balancing method. rizatey a rotor using QHSBM is
accomplished primarily by correcting a rotor’s dgnode unbalances at a speed lower
than its operating speed. Most, if not all balagds done below and up to a speed 50%
above the rotor system'’s first fundamental critgaeed, as long as the rotor’'s responses
in that speed range are measurable and consisgpidally from around 800 to 1500 rpm
for large generator rotors). QHSBM is mostly soigafor rotors with deformation, bows
and eccentricities that have developed on rotoy lb@tween bearings through many
years of use in power plant environment. By thiai's experience, the great majority
of all rotors handled by the author in an independégh-speed bunker facility have
deformations in excess of the “controlled initiabalance” limits for eccentricity

allowed by 1ISO1940.

The total number of balancing planes is determimethe expressio@N+1 and includes
the full body of the rotor, including the overhar{fig a long coupling shaft), which may
have their own critical speeds independent of tlmdskee main rotor body. It is
necessary to include long overhangs of this typley can affect the state of balance of
the rotor itself during the balancing process.

The equatior2N+1 is derived from the minimum number of Finite Elertgerequired to
define a rotor in FE modeling, in a way that noeengplues and corresponding
eigenvectors will be missed within the speed ravfgaterest. This also means that each
of the elements when defined this way will behava &ully rigid beam within the entire
operating speed range. This fact, combined wighptimciple that any rigid rotor can be
balanced in two balancing planes leads to the mimmequirement of 2N+1 balancing
planes.

For example, a relatively rigid rotor that only pas through its first critical speed before
reaching operating speed could be defined in ambé&el with only two modal elements
(with the shared element border at the midplaigch half of the rotor would behave as
a fully rigid body at first critical speed, andsgch, each half can be balanced in two
planes. Since the midplane is shared betweemihelements, the weight placed there
applies to each element. In this example, numberaales passed, N, is equal to one, so
balancing can be completed using three plafiéss is the minimum number of planes
possible to use to balance any eccentric rotor.

Similarly, a rotor passing through only the finsbtcritical speeds can be divided into
four rigid modal elements, which leads to five tdtalancing planes. A rotor passing
through three critical speeds must be divided amaigid modal elements, which leads
to seven total balancing planes. Furthermore odlahweights are needed to resolve any
residual unbalances after fully balancing the tigalrmodes (lateral and rocking), they
are appropriately distributed among the same splaoies.
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Two Other Quasi-High Speed Balancing M ethods:

It should be mentioned that besides the QHSBMethes two more not very publicized
balancing methods by which the balancing was perdéorat quasi-high speed (that is, at
a speed lower than operating speed, but abovetbeliearing system'’s first critical
speed).

The first method was written for NASA-Marshall Spddight Center by E.Zorzi and
J.Giordano, from Mechanical Technology Incorpordtdd|), and G.VonPragenau,
titled “Low-Speed Flexible Rotor Balancing for SntlmoHigh-Speed Operation.” The
intent of the method was to handle special casesmyfhigh speed rotor operation,
where balancing facility did not exist to balanke totor “at speed”. The method
required several steps:

1. Developing an FE model of rotor to determine alde®within operating range.

2. Providing balancing planes accordingly to the deiten peaks of the rotor’'s
modes.

3. Providing measurement locations at the balancesplan

In principle, the method worked, but it never exgheshits use into the general balancing
industry.

The second method, called “Pseudo-high speed hatahevas developed and patented
by Prof. Dr. Ehrich on behalf of General Electrithe purpose of this method was
similar to the MTI method, with a focus on smallais, but with the intent of increasing
efficiency of production in the manufacturing emviment. This method also required
modal prediction using specifically devised inflgercoefficients, and balancing was
designed to be performed by operators who werécsgaritly trained, but without the

need for an extensive knowledge of rotor dynamislisadvantage of this method is
that it is only done on a low speed balancing maghivhere the rotor response during
balancing is only measured as a direct bearingfaod shaft displacement is neglected.

The Author’s Quasi-High Speed Balancing Method (BN has some elements of the
previously mentioned methods, but it was develgpattipally for shop balancing of
large flexible rotors (turbines and generatorspfmwer generation) having an inherent
bow or body eccentricity, which would otherwise édw be corrected by machining.

(An exception applies to turbine rotors which bgida have only two balancing planes.
When such a rotor develops a bow, the only wayatarize it correctly requires the
machining of a third balancing groove. If that & possible for any reason, then the only
way to correct the rotor’s vibration behavior iswachine new axis centers; in reality, to

25



shift the rotor’s shaft axis through the rotor’'sssaxis. A bowed rotor having only two
balancing planes can not beproperly balanced for operation in thefield.)

The 2N+1 Balancing Method:

When starting with an unbalanced, eccentric rotas,necessary to take detailed runout
readings at many axial locations to determine tieeipe shape of the rotor. To bring the
rotor into a perfectly balanced condition, balagaveights should ideally be placed on
every radial plane of the rotor on the side opgositthe net resultant point of unbalance
of each given plane. Of course, this isn’t pradtto do on any real rotor, given that the
number and availability of balancing planes istedi The 2N+1 method provides a way
to best approximate the above ideal balanced aondlty best compensating for all
unbalances and eccentricities.

The next step is to create a detailed finite elémedel of the rotor, to determine the
critical speeds of the rotor as accurately as ptessiThe highest mode that the rotor
passes through until reaching its operating speéetmines the number of balancing
planes to use, following the 2N+1 formula.

The selection of the location of each of the balagplanes is based on a finite element
model of the rotor that is simulated using infityitagid bearings. The reason for using
fully rigid bearings is to eliminate any effectlméaring softness in altering the mode
shape of the rotor. In this model, only the pumshape(s) of the rotor itself is seen,
and not the contorted mode shape that would appeeal life due to softness in the
bearings and their supports. Despite the factthieselection of balancing planes is
based on a model not taking into account the agiugdical mode shape of the given real
system (if including bearings, etc), the results H00% applicable to the rotor in the
field.

With fully rigid bearings in the model, the shafteenodal points for all modes will
always pass through the shaft centerline at thearpeant of support in each bearing.
This will also provide the clearest location ofthlé modal peaks and nodes of all
resonant responses. The location of these peaksattes creates the overall template to
use, as these act as the boundaries between thheel@mnents (such that each element
behaves as a fully rigid beam). The axial centegravity of the rigid elements can also
be sometimes used interchangeably as a referentdgefbalancing planes. For example,
the axial center of gravity of the rotor body asteole corresponds to the modal peak of
the first resonant mode. The center of gravitthef“rigid” elements within the first

mode response (essentially, each half of the retdirpe at the location of the two modal
peaks of the second mode response.
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When selecting the elements for generating a FEAaih@another rule of thumb is that
the axial length of any element must not be angtgrehan the diameter of the element.
In this way, it can be assured that each of theetes will behave independently as a
purely rigid beam, and will have no bending witfiself.

QHSB-Method Example for a Rotor Operating Aboveits Third Critical Speed:

The example showing the 2N+1 method is done osdhee eccentric rotor model (with
guasi-static distributed mass eccentricity) agierother two methods above. Recall that
the rotor operates above its third critical speed therefore, there will be seven
balancing planes used. A summary diagram of tkenbeng planes, balancing shots and
weight distributions used is shown in the Figurar@] can be referenced during the
explanation of the procedure.

The five central, pre-selected balancing planestase determined from FE modal
analysis to be at the modal peaks and nodes dirsh@nd second mode resonant
responses. These planes, however, are used teadise rigid modes of the rotor
resulting from the mass eccentricity. By succdisfasolving the rigid modes, the first
and second mode resonant mode responses willmhmated as well.
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Identification of Balancing Correction Planes and Types of Weights/Distribution
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speed range. The overhangs are balanced separately from the rotor

Figure 8: Identification and location of balancing correction planes and weight distribution
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The rigid lateral mode is balanced first, and ubescentral three planes (planes 1, 2, and
3). The balance weights are placed in a propatidistribution where approximately
half of the first static trial shot is placed a¢ tmidplane, and the other half is divided
equally at each quarter-plane (the initial angleased on the eccentricities indicated by
the runout readings, or from an estimated phasebdagrved on a Nyquist (Polar) plot.
The reason for this distribution goes back to tvecept that any fully rigid rotor can be
balanced in two planes. Looking at the first mogkponse alone, each half of the rotor
acts as a rigid beam, and therefore each half eaxobsidered as a rigid element that can
be balanced in two planes. Since each of theseigibelements (with regard to the first
mode) shares the midplane, this plane is essgntiglized twice, once for each rigid
element. Since the first mode response is tygicalinmetric about the midplane, each
of these two rigid elements will likely have a dianisolution. Therefore, each rigid
element receives the same initial solution in @&hbce shot, with the end result being
that the midplane is used twice. The influencdfaents can then suggest an axial
redistribution or phase shift of the weights tcefitune the solution.

The rocking rigid mode is then resolved similarig & procedure of using trial shots and
obtaining influence coefficients, using the outeo fplanes in pairs as 2 and 4 and 3 and
5, one set at a time. This distribution is refinsthg influence coefficients until it can be
seen that there is no longer a rising upslopeerathplitude displayed on a Bode plot at
speeds above the system first resonance. If thereising slope, then the rigid rocking
mode has not been fully resolved (as can be obdéater in Figure 12).

This process ultimately results in five balancitgnges being needed to fully solve the
rigid mode responses from the eccentricity, whesuits in the rotor becoming
dynamically straight. The rotor's mass axis anafftshixis should be coincidental through
the entire speed range, and no change in axi®ealir above the first critical speed.

If the rigid modes were solved correctly, then al@&plot should show a flat horizontal
line all the way to operating speed (with an amogi value equal to the rotor’s
eccentricity), with an exception possibly beingreetspike in amplitude at the second
and third critical speeds (as can be seen latéigure 14). If the amplitude has remained
flat until a speed of 50% above the first critidhkn it can be assured that it will remain
flat for all higher speeds as well. This is thasen the term Quasi-High Speed can be
used. There is not a need to run to the secotidatrspeed or higher to continue
balancing, as the solution is already completelde dnly need is to run once to operating
speed to verify if the third critical speed is lipexcited.

The other two outboard balancing planes (planesd67a are used as part of standard
modal weight configurations to resolve either thiect critical (first flexural mode), or to
resolve any additional response of the second aetanode induced by the motion of
long overhangs. If there is an increase in amgbditnear the third critical speed, it can be
seen if the responses at the ends of the rotan gafgase or out of phase, or possibly
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some combination of both. If the responses aphase, a modal V-shot should be used.
If the responses are out of phase, a modal S-Bbotdbe used. If the responses are a
combination of both, the motion with larger ampliéushould be balanced first with the
appropriate modal shot, with refinement then dasiegithe other modal shot.

Lastly, in the rare occasion that a long overhasgjfihas an independent critical speed
response, balancing weights in the couplings therasean be used as part of a modal
weight configuration. This last portion, though niot considered to be a part of the
overall 2N+1 balancing procedure, since any ecugtytof the overhangs MUST be
resolved by machining before commencing any roabarcing.

Other Thingsto Remember:

While balancing, if the position of the eccentyaiian’t be measured directly, its true
polar-angle direction can be determined based epliase lag of the rotor’'s
displacement response at the first critical speduke direction of the eccentricity will be
90 degrees ahead (in the direction of rotatiorthefdisplacement response. Then, to
balance the unbalance effect of eccentricity, tlarce weights should be placed 180
degrees opposite to the eccentricity. This meaaisthe weights to correct the rigid
mode are placed 90 degrees behind the peak digpateesponse at the first critical.

By balancing near the first system resonance, g @st rotor response is seen, and the
dynamic lag can be compensated based on the Rolatga.

If the response is being measured through fordeansof displacement, then it should be
remembered that force measured directly at lowdgpdeesn’t have phase lag, and the
measurement will always point in the directionlo# tnass eccentricity. For speeds at the
first critical and higher, the force may lag somatyliepending on balancing speed and
the system damping. This lag in directly meastdioece, however, is not the same as the
lag in displacement, and the angle relation isrdg@teed by testing, i.e. the direction of
eccentricity if based on force measurements albheher speeds can be better
determined by obtaining influence coefficients.

Additionally, when dealing with influence coeffiaies, the software calculation does not
know that more than one plane is being used aba fior a given trial balance shot.
Therefore, whatever results are obtained throufjbence coefficients must be applied
proportionally toall the planes where weights were placed for thdtghat (each weight
would adjusted up or down by the same percentagse taftal mass).

The Key Point Repeated:
In summary, any rigid mode unbalance can be bathimcéve planes (for a typical

industrial rotor operating above its third criticgleed). This method will solve the rigid
lateral mode response (using the first three plamesl also solve the rigid rocking mode
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response (using the additional two planes). Thar tmalanced in this manner will be
dynamically straight, and will not bend at any spe@Any higher mode resonant
responses must be solved only with modal weigttidigions so as not to disturb the
rigid mode solution.

More concisely still, thdending component of the vibration is to be resolved aniy
purely modal weights. Thregid component of the vibration is resolved as if deglivith

a static beam, by simply compensating for all tis¢ridbuted forces and the moments that
are acting on the beam, by placing correction wisighaxially preselected balancing
planes.

2N+1 Method: Step by Step Example for a Real Generator Rotor:

The following section shows plots for the balangimgcess of a real generator rotor,
using the QHSB-Method (in 2N+1planes). The modslits shown earlier were to
simulate the balancing of this rotor (albeit usanfgleaner” eccentricity distribution — the
real rotor had an eccentricity of around 2 milsaimore randomly undefined distribution
shape). Like in any balancing process, thougiptamhning must be done and
predetermined rules must be followed.

First Roll:

The rotor is first rolled in its original unbalartcstate to the maximum speed achievable,
without exceeding preset vibration amplitude limAs image of the Bode plot can be
seen in Figure 9. In this example, the rotor'supnwvas halted upon observing an
exponential increase in amplitude while approachiegfirst critical. If the speed were
allowed to increase any further, the amplitude dqdtentially keep growing
exponentially, risking bearing or rotor damageo rall to higher speeds, a balance shot
must be placed first.

The rotor response is plotted using polar plotsis Tan show either displacements or
velocities (which provide the forces), dependinglominstrument setup of the balancing
facility. The signals from sensors located at sasference angle from two journals are
plotted on same polar plot. The polar plot fosthist roll is seen in Figure 10.

The amount of the first trial weight set is estigthtising the 10% rule suggested by
Bentley Nevada, which states that the centrifugadd generated from the trial weight, at
operating speed should not exceed 10 percentaifriibr weight:

Whrial = m * e * ®2 = 0.1*Whotor.

Based on the angles of the static response veatting highest speed reached (the vector
arrows seen in Figure 10), with consideration pbasible phase lag, the first trial weight
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First Attempted Roll Without Balancing Weights z
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Figure 9: High amplitudes approaching the first fundamental system critical speed

Nyquist (Polar) Plot of First Run (no balance weights)
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Figure 10: Polar plot used to determine the direction of the “static” unbalance vector




set for the compensation of the rotor's rigid katenode (which excites the first system
resonance) is distributed in three planes as steanlier on Figure 8. The weight
placement angle is chosen based on the directitmeaksponse vector seen in the polar
plot.

The rotor is run again and the response is usgdrnerate the first set of influence
coefficients. Another run may be necessary to hifregamplitude of the rotor’s first
system resonance down to the point where it isleéqube initial slow roll runout from
eccentricity. The angle of the weights could bgisteéd within +/- 5 degrees from the
initial phase angle. The polar plot after placihg first trial shot is seen in Figure 11.

Nyquist (Polar) Plot After Placing 1st Trial Shot

Full scale:
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(Passed critical speed at 560rpm; Note reduced amplitude at ~500rpm vs. previous plot)

Figure 11: Trial shot placed in 3 planes, acting to resolve the amplitude at the first fundamental
critical speed

If the rotor amplitude rises at some slope aftesspay a resonance speed, it is an
indication that the static unbalance is not symméthat is, the mass eccentricity is
actually a quasi-static unbalance), and indicdtasthe true mass center is axially off by
some distance from the rotor's geometric centdrs $lope can be seen in the Bode plot
in Figure 12.
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Nyquist (Polar) Plot: Rigid Modes Resolved

Full scale: _
50 micron -
peak-peak I
2 mils) 2
.

0

270°

CCW Rotation

(First critical nonexistent; slight excitation remains around 2nd critical, but fully acceptable)

Figure 13: The rigid mode responses are resolved, continue to higher speeds
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In this case, two more sets of trial weights ofag@mount are placed, first in planes 2
and 4, and then in the next run in planes 3 andsihg an appropriate balancing
program, a new distribution of the balance weightsalculated based on the two sets of
influence coefficients just obtained. With axiadlistribution of the weights, the "rigid
modes" of the rotor should be resolved. A polat [# shown in Figure 13, and the Bode
plot should look as seen in Figure 14.

Bode Plot: Run to Higher Speed, Checking for Existence of 2nd Mode Response nz
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Figure 14: Indication of existence of forced unbalance response at the speed of the second
critical

As speed is increased on the next run, if any asmd amplitude is observed at rotor’s
second system critical speed (a bending of the mitds coupling overhangs), any
correction should now be done only using modal Wsign an S-configuration. Since
the rigid modes are already resolved, all subseqgueights must not change the
distribution of forces and moments from rigid maohdalances on the rotor. The S-shot
modal weights must be judiciously distributed iam#s 4 and 6 and 5 and 7, in such a
way that

F=0 and M =0.

Continuing to roll the rotor to operating speedrthmay be an observed a change in
shape of the amplitude curve in Bode Plot, at arendboth ends of rotor. If the
amplitudes are predominantly out of phase, theipusvS-shot modal weights should be
modified. If the dominant amplitudes are in phas®8/" modal weight set should be
utilized using planes 1, 6 and 7 simultaneously manner as shown earlier in Figure 8.
A Bode plot of the completed balanced rotor casd®n in Figure 15. As can be seen,
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the total vibration at the bearing locations atehd of the balancing process is less than
half a mil through the entire speed range.

Final Bode Plot After Completing Balancing
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Figure 15: Final Bode plot of the sufficiently balanced rotor

If the final balancing weight distribution resuleve to be mapped out as a curve, it
should ideally be a mirror image of the curve @& thnout reading shape of the rotor.
The Bode plot should remain a flat line for all sgg, and the rotor will be running
dynamically straight. When a rotor is eccentie tlat Bode plot line is not necessarily
at zero, but may be flat at 1 or 2 mils which reprgs the amount of eccentricity in the
rotor, and it cannot be reduced any farther. @fher, it could be “reduced” only by
faking it, such as by actually unbalancing the redoan operating position where a nodal
point is shifted to the displacement probe’s meaaguocation, which would

dramatically increase the force of the rotor onlibarings.)

It should be self evident that every possible coraton of unbalance from eccentricities
is impossible to predict. Nevertheless, by sohangtor's rigid modes first, using the
QHSB-Method with balancing plane selection basetherrotor's highest mode shape
within its operating speed range, the rotor willhbade "dynamically straight". By
accomplishing this, the rotor will behave lineatyough its entire operating speed range.
With that, the effects of the inertia forces fronyanass eccentricity, and any nonlinear
rotor behavior can be avoided, making the entitartzang process simpler and more
efficient. Excellent results can be obtained wderuns, and the end result is a well-
balanced rotor that is guaranteed to run smoothignanstalled in the field.
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CONCLUSIONS:

1. Any rotor that is concentric within the lim$ ISO 1940 regarding residual
eccentricity can be successfully balanced uamgof the balancing methods.

2. When using standard methods to balance anyttabis bowed or eccentric,
exceeding the criteria of ISO 1940, whether rigidlexible, the rotor will be
inadvertently balanced around its mass axis atdspaleove the first system resonance.
At operating speed, the rotor will be contorted @rvidll create or increase forces in the
bearings if constrained by bearing clearances dodyg coupled to other rotors.

3. Allrigid, bowed rotors balanced by the N oe ti+2 methods on a soft-bearing low
speed balancing machine will be problematic afeendp coupled to other rotors and
placed in service, if the final balance was congaet/hile the rotor was spinning (or in
precession) around its mass axis.

4. Arigid, eccentric rotor balanced using the N+2 method bard-bearing low speed
balancing machine will be correctly balanced isibalanced in three planes, and will
operate fine after it is placed back in servicesgéming the couplings are concentric to
journals).

5. Any flexible, bowed or eccentric rotors opargtabove the second critical speed, and
balanced by the N or the N+2 method will operata aontorted shape, mimicking the
highest operating mode shape. This condition tsmaeate problems on composite
rotors (generators) where some components can Uptland create vibrations from
“thermal” related issues.

6. Any flexible or rigid rotors, with bows or eateicities, balanced using the 2N+1,
QHSB Method, after resolving the rotor’s rigid mad#alances, will become
dynamically straight, and will maintain its shapeough all speeds. Even after using
modal correction weights at higher speeds for fur@ng if necessary, the rotor will
operate as balanced around its shaft axis, withagteed performance in the field.

7. With many additional runs in a balancing fagind a lot of trial and error, a highly
eccentric or bowed rotor may ultimately be broughgpin around its shaft axis and be
balanced correctly using other methods as wellwél@r, the number of runs, labor
hours spent and the electricity costs for the dnmeor used makes the choice of
procedures an economics issue as well.

8. The QHSBM is applicable on any low or high spbalancing machine, saves the
number of trial runs and uses less power durindp#iancing process. Finally, a rotor
balanced by the Quasi-High Speed Balancing Metmodyzes better balancing results,
which makes follow-up balancing of the rotor in fredd unnecessary.
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Other Closing Comments:

A Jeffcott rotor doesn’t fully represent the belwaof an eccentric rotor. In a Jeffcott
model with a massless shaft holding an eccentsik, dihe “rotor” can achieve a self-
balanced state as the disk’s center of mass mat@she rotational axis at high speed.
However, it accomplishes this in the model onlybeynding the shaft, and without the
shaft transmitting any forces. In a real eccentstor, the entire shaft itself shifts the
position of its rotational (or precessional) axas] this dynamic motion both effects and
depends on the transmission of forces into theimgs(and identifying this dynamic
motion is the key to successful balancing). Indbfcott model, this dynamic behavior
of the shatft itself and its resulting change inftirees on the bearings is generally
neglected.

The cross coupling (that is, the effect of the e on the rotor combined with the
effect of the rotor on the bearings) between thécstorces (bearing-originating) and
dynamic forces (rotor-originating) is really andrdaction between the inertia forces
acting on the rotor and the dynamic stiffness gcéinthe bearings. The rotor’s static
shaft centerline position is determined by the ouum of static forces in the bearings
(as in a simple beam). The rotor’'s dynamic motoposition (such as it's varying
precession of axes) is determined by the equilibrad the forces from centripetal and
tangential acceleration acting on every infinitegimadial plane of any portion of the
rotor in which there is mass eccentricity.

Real-life rotors in a balancing bunker on two begsican assume a self-balance state,
with stable rotation centered around the mass ais can happen as long as the
bearing clearances are larger than the rotor’s cwomass eccentricity (tighter bearing
clearances will restrain the rotor from shiftingaits position of natural dynamic
equilibrium). Real-life bowed rotors, or rotorstiwsignificant eccentricities can never
achieve a self-balanced state when they are assénmba rotor train, even when they
were balanced “well” in a bunker by the N or N+2thwoeals.

The overall dynamic behavior described also apptiesery high speed turbochargers,
compressors, or vertical pumps with impellers medrdutboard of the bearings on a
slender cantilever. They can seldom achieve thaximum designed operating speed,
since eccentricity is introduced by shaft bendingythe impellers’ deformation or
shaft-fits at very high speeds, usually at theesysfirst critical speed. In these small
rotors, if spinning at 50,000+ rpm, even a few i of eccentricity can negatively
impact its dynamic behavior.

Besides the standard rotor type classification bysAor ISO standards, rotors must be
further classified between those being in compkanih ISO 1940 and those outside
compliance, with regard to residual eccentricities.
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If we balance only rotors that are in complianagegithat mean that those outside
compliance cannot be balanced and that they shmuttiscarded? NO! Rotors out of
compliance must be further classified to those igeiccentricities on the body between
the axial centers of the journals, and those hagougntricities in sections outside of the
body of the rotor (that is, outside the first maaelal point or axial journal centerline),
such as in the couplings, seals and journals.

Rotors with eccentricities of the body betweenjthenal centers CAN be balanced
using the appropriate number of balancing planeggr plane locations and appropriate
balancing method. Eccentricities of sections efribtor outside the journal centers
MUST be machined to bring the rotor into complian&®tors with significant
eccentricities between the journals that do notlthe sufficient number of balancing
planes available cannot ever be properly balan@edgderation in the field, before adding
the necessary planes, or by corrective machining.
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